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Cubature Error Bounds for Analytic Functions 

By F. G. Lether 

Abstract. In this paper, two-dimensional cubature error bounds are developed. It is 
assumed that the function to be integrated is analytic, and that the domain of integration 
is contained in [-1, 1] X [-1, 1]. 

Tables of error constants for several cubature rules and domains of integration are 
included. 

1. Introduction. The purpose of this paper is to develop cubature error bounds 
for a general class of rules. The weight function is not required to be unity and the 
region of integration need not be a square. It is assumed that the function f, to be 
integrated, is jointly analytic in each variable inside a disc of radius r > 1. We employ 
a technique similar to that used by Stenger [17], and apply the cubature error func- 
tional to the double Taylor series for f. This analysis has the advantage of being 
elementary and leads to derivative-free error bounds. 

Many of the cubature error results which have appeared in the literature are 
restricted to cross-product rules. We mention the work of the following authors: 
[1], [8], [13], [18]. In general, these bounds cannot be easily extended to nonproduct 
rules. 

It is possible to use the kernel theorems of Sard [14] to obtain error bounds for 
nonproduct rules. However, these bounds involve partial derivatives of f, which are 
often difficult to work with. In using Sard's results, as given in [19, Chapter 5] one 
must decide which of the many possible spaces Bpq, B[pqj to work in. It may be 
necessary to take several values of p and q to find an acceptable error bound. Stroud 
[19, Chapter 8] has recently computed the Sard error constants for several cubature 
rules. Most of these constants are for rules over [- 1, 1] X [- 1, 1]. They are difficult 
to compute, and impractical to tabulate for moderately high order rules in 3 or more 
dimensions. 

Barnhill [2] has used Hilbert space techniques to develop derivative-free error 
bounds. His results are not restricted to cross-product rules and the domain of 
integration need not be a square. We remark that Chawla [4] has also obtained 
derivative-free cubature error bounds through Cauchy's formula. Chawla's error 
bounds are similar to Barnhill's. The error constants, for both of these error bounds 
and the bounds developed in this paper, depend on the region of regularity of f. 
It is therefore necessary to tabulate several error constants for a fixed cubature rule. 
Stroud [19] has recently tabulated the Barnhill error constants for several rules. 
However, the error constants necessary for the practical application of Chawla's 
error bound have not been tabulated. 
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In Section 2 of this paper, we give an elementary derivation of an error bound 
for a general cubature rule in two dimensions. Several numerical examples are given 
which illustrate the application of the theory. The error bound obtained in this paper 
is compared with the error bounds of Barnhill and Chawla in Section 3. The error 
constants needed for our bound are tabulated in Section 4 for several of the rules 
which appear in [19]. 

Although we treat only the two-dimensional case here, the extension of our 
results to higher dimensions will be obvious. 

2. Error Bounds. Let the cubature rule 
N 

(2.1) iJ (x, y)f(x, y) dy dx = Wkf(Xk, Yk)+ E(f) 
k=1 

have precision p. We require (Xk, Yk) C D, 1 < k < N and D C S, where S = [-1, 1] 

X [-1, 1]. 
In the following work, z = x + iu and w = y + iv, where x, y, u and v are real. 

Let Br denote the closed bicylinder of radius r > 1, defined by {(z, w): Izi < r, 

jwI < r}. The class of all functions f(z, w) that are real when z and w are real and 
such that f(z, w) is analytic in Br is designated by A(Br). 

THEOREM 1. Let f C A(B,), r > 1. Then 

(2.2) IE(f)I | e, M(r), 

where 

(2.3) e= r- IE(xMy/) 
JA+ ', p + 1 

and 

M(r) = max IJ(z, w)I. 
I z I = I w I =r 

If the errors E(xyv), ,u + v > p + 1, have the same sign, then 

(2.4) er = IE[(1 - x/r)1(l -y/r) 1]j 

Proof. f C A(Br) implies that, at all points (z, w) C Br, 

f(z, w) = E a,,z w, 
A+ PO0 

where 

! =aM+vJ(z, w) 
,u! v! aA, 

(9zW9 W z=w=O 

This double Taylor series converges absolutely and uniformly in the closed bicylinder 
Br and Cauchy's inequality [5] holds: 

IaM, t r`_ M(r). 

r> 1 implies D C S C Br. Thus, 
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E(f) = E a,,E(xy') 
p+ v~p+ 1 

and 

I E(p) I -< E |a,,l w |E(x~yy )l 
ps+ v 2is+ 1 

< M(r) E r'' I E(xMy)I = e M(r). 
A+ vp 2+ 1 

Let 

h(x, y) = (1 -x/r)-'(l -y/r)-1. 

The Taylor series 

h(x, y)= E rM'x~y 
JA+ V20 

converges uniformly on D. Consequently, 

E(h) = E r -E(x~y'). 
p+ wpa+ 1 

Suppose E(xyy') _ 0, pi + v > p + 1. Then, e, = E(h). Similarly, e, = E(h) if 
E(xlyy) < 0, g + v _ p + 1. It follows that e, = IE(h)I, provided the errors E(xyy'), 
,g + v ? p + 1, have the same sign. This completes the proof. 

In the error bound (2.2), it is necessary to evaluate M(r). This involves computing 
the maximum modulus of f(z, w) on the distinguished boundary {(z, w): Izi = r, 
Iwj = r} of B. If the Taylor coefficients aA, have the same sign for u + v > 0, then 
M(r) = If(r, r)I. This condition on the Taylor coefficients will sometimes be evident 
without our having explicit values for the a A, for example, if f(x, y) = 
(20 - x - y)-2 tan(x/6). It may also be possible to compute M(r) by evaluating 
If(Z, w)l at a sufficiently dense set of points on the distinguished boundary of B,. 
It should be noted that the error bounds in [2] and [4] also require the computation 
of a quantity analogous to M(r). 

The error constant e, depends on r. It is therefore necessary to tabulate e, for 
several values of r, for a fixed cubature rule. If f E A(B,), 1 < r < R < A, then 

| E(f)j| < inf e, M(r) . 
1<r<R 

Example 1. The cubature rule 
1 rl-X fo Of f(x, y) dy dx = +rU@, 2) + f(2, 0) + f(0, 2)] 

+ [f( 6) + f(, 23) + f(2 , 6)] + E(E) 

has precision p = 3. Suppose this rule is used to approximate the integral 

.10 (20- - 
-x/-)2 dy dx = .7519481768(-4), 

where the value in parentheses indicates the power of 10 by which the preceding 
number should be multiplied. 

The integrand is in A(B,) for 1 < r < 37r. By our above remarks and (2.2), 
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JEl < e,(20 - 2r)-2 tan(r/6). 

The right side of this inequality is minimized when r = 6 in Table 1. For this value 
of r, we obtain JEJ ? .1230(-6). The true error is El = .6430(-9). 

The error bound (2.2) can be improved if (2.1) is a fully symmetric rule [7]. Con- 
sider the function g defined by 

g(z, w) = 4[f(?z, ?4w)] = a* azw, 

where the asterisk indicates that the sum is to be taken over the even indices only, and 

f(?z, ?w) = f(z, w) + f(-z, w) + f(-z, -w) + f(z, -w). 

Set 

N(r) = max lg(z, w)I. 
I z I = 1w I =r 

Clearly, N(r) ? M(r) and, by Cauchy's inequality, 

Iap, < r "N(r), 

for even ,u and v. If (2.1) is fully symmetric, then E(f) = E(g). It follows that (2.2) is 
valid if we replace M(r) by N(r). Even though g will usually be more complicated 
than f, there may be instances where it is worthwhile to use N(r). If the Taylor co- 
efficients of f, with even subscripts, are all of the same sign, then N(r) = g(r, r)I. 
The function f(x, y) = (x + y + 16)-' has these properties and for it N(r) = 32'1 + 
2(64 -r2)- 1, in contrast to M(r) = (16 - 2r)-'. 

Example 2. Consider the fully symmetric cubature rule 

f(x, Y) dy dx = - [t( 5 2 ?) + f(, 2 2)] 

which has precision p = 3. We use this rule to approximate 

f dy dx 1 .1967345414. 
Jz+vs Y 2:X + y + 16 

TABLE 1 
Error Constants for Example 1 

r er 

1.1 .5360(-1) 
1.2 .2362(-1) 
1.3 .1251(-1) 
1.4 .7371(-2) 
1.6 .3122(-2) 
2.0 .8755(- 3) 
3.0 .1142(-3) 
4.0 .3020(-4) 
6.0 .5053(- 5) 
8.0 .1478(-5) 
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The error bound (2.2), with M(r) replaced by N(r), gives 

JEl < er(1/32 + 2/(64 - r2)). 

Taking r = 6 in Table 2, we obtain |El < .1081(-4). The actual error is El = 
.7549(-6). 

In certain cases, (2.4) is a convenient alternative to (2.3) for the computation 
of er. Suppose c(x, y) =1 and D = [-1, 1] X [-1, ] in (2.1). Then, (2.1) and (2.4) 
give 

(2.5) = rInr 1) E Wk I Xk k 

If the errors E(xuy'), ,u + v ? p + 1, have the same sign, then (2.5) is preferable 
to (2.3). In particular, the error representation given in [9] can easily be used to show 
that E(xuy') > 0 when (2.1) is a Gauss-Legendre product rule. 

It is possible to bound er. Let 

c= sup IE(xUy') and 6(r)= i' r 
A 

-, 

U+ >2P+ 1 U+YOp+1 

where the prime on the summation indicates that the sum is to be taken over the 
indices u + v ? p + 1 for which E(xuy') 5 0. Clearly, c < c. By the proof of 
Theorem 1 and (2.3), 

(2.6) IE[(1 - x/r)'(l -y/r)Y']l < e, < c6(r). 

We have 

6(r) < E ->A 
(p + 2)r (p + 1) 

_ 1 )2 A+P>-P+ r (r 

For certain classes of cubature rules, a closed form for 6(r) can be calculated. If 
(2.1) is a fully symmetric rule, then 

(p + 3)r2 - (p +1) 
2r" (r2- 1)2 

TABLE 2 
Error Constants for Example 2 

r e 

1.1 .5862 
1.2 .2619 
1.3 .1430 
1.4 .8712(-1) 
1.6 .3939(-1) 
2.0 .1232(- 1) 
3.0 .1921(-2) 
4.0 .5629(- 3) 
6.0 .1053(-3) 
8.0 .3272(-4) 
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TABLE 3 
Error Constants for Example 3 

r e, c a(r) 

1.1 3.596 12.64 
1.2 1.507 3.318 
1.3 .8045 1.467 
1.4 .4851 .7990 
1.6 .2171 .3213 
2.0 .6747(-1) .9112(-1) 
3.0 .1047(-1) .1315(-1) 
4.0 .3062(-2) .3755(- 2) 
6.0 .5726(- 3) .6908(- 3) 
8.0 .1778(-3) .2133(-3) 

A similar formula can be established for cross-product cubature rules. 
Inequalities (2.2) and (2.6) suggest the error bound 

(2.7) IE(J)I ? cb(r)M(r). 

This error bound is more convenient than (2.2) in the sense that the error constant 
c, unlike e,, does not depend on r. However, the bound given by (2.7) is somewhat 
worse than that given by (2.2). This is particularly true when 1 < r < 2. Numerical 
experiments also indicate that e, is generally preferable to c for characterizing (2.1) 
and comparing cubature rules. 

Example 3. The Gauss-Legendre product rule 

f f f(x, y) dy dx = ,3 ?3 1/) 

has c = .423280 and p = 3. 
Since E(x'y') > 0 for , + v' > 4, 

= ri'+ 1)2 
3 ( -2 

(r r In 
1) ( 

by (2.5). For this product rule, 

6(r) = (2r4 - 1)lr4(r2 - 1) 

In Table 3, we have tabulated er and c5(r) to facilitate a comparison between the 
error bounds (2.2) and (2.7). 

3. Barnhill and Chawla Error Bounds. Error estimates for (2.1) can be de- 
veloped by using Hilbert space techniques. This theory is due to Barnhill [2] and is 
summarized in Stroud [19, Chapter 5]. Chawla [4] has recently obtained cubature 
error bounds similar to Barnhill's, through the use of Cauchy's integral formula. 
In this section, we compare (2.2) with the error bounds of Barnhill and Chawla. 

Let Sp denote the set of points in the complex plane which are interior to the 
ellipse with foci at z = 1, semimajor axis a, semiminor axis b = (a - 1)1/2 and 
p = (a + b)2 > 1. Designate by Sp X (p the set of all pairs of complex numbers (z, w), 
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TABLE 4 
Geometric Quantities for S 

a b p a-b 

1.6 1.2490 8.1168 .3510 
2.0 1.7321 13.9282 .2679 
3.0 2.8284 33.9706 .1716 
4.0 3.8730 61.9839 .1270 
6.0 5.9161 141.9930 .0839 
8.0 7.9372 253.9961 .0628 

where z E p in the complex z plane and w G Up in the complex w plane. If f(z, w) 
is analytic in the closed, elliptic bicylinder Sp X (, then the theory in [2] and [4] can 
be used to bound E(f) in (2.1). 

Barnhill's error bound is given by 

(3.1) 1 Et) I < dp I1f1j 

where 

(3.2) 11th2 = fff f(z, W)12 dx du dy dv 

tpxtp 

and 

(3.3) d2 = 167rF E (. + 1)(v + 1) IE[UM(x)Uv(y)] 2 
A+ V>p+ I (P M+ - p- )(p+l - p ) 

In (3.3), U,(x) is the ,Ath Chebyshev polynomial of the second kind. As noted by 
Barnhill, the main difficulty in using (3.1) is the computation of I fI . Let 

MP = max f(z, w)j, 

where a = {(z, w): z E a p, w G a p} is the distinguished boundary of (P X SP. By 

(3.2), 

(3.4) I | II |< ?rabMp. 

Combining (3.4) and (3.1), we obtain 

(3.5) [E([)] < 7rabdpMp. 

From the work of Chawla [4], 

(3.6) |E(f)j < cpMp, 

where 
,, 

(3.7) c = 16 E -E- JE[T,(x)TV(y)]12. 
A+ v2 p+ 1 

(It should be noted that p = (a + b)2 here, whereas p = (a + b) in [4].) The double 
prime on the summation sign indicates that the terms having ,u = 0 or v' = 0 are to 

be multiplied by 1. (Due to a misprint, the previous multiplier is given incorrectly 
as 2 in [4].) In (3.7), T,(X) denotes the ,uth Chebyshev polynomial of the first kind. 
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Suppose f C A(Ba). Since b = -(pl/ _ p-1/2) < j(pl/2 + p- 1/2) a t X B 
and Mp < M(a). By (3.5) and (3.6), 

(3.8) IE(f)j _< rabdp M(a) 

and 

(3.9) JE(f)j <_ cpM(a). 

Table 4 indicates that a / b for large p. More precisely, a - b = p-1/2. For large p, 
the error bounds (3.8) and (3.9) are more convenient and give essentially the same 
results as (3.5) and (3.6), respectively. 

If we take r = a in (2.2), then (2.2), (3.8), and (3.9) have analogous forms. For 
large p, it is reasonable to compare these error bounds by comparing ea with 7rabd, 
and cp. 

Let 

a= [ E(xuy Y)j 
A+Y-P+ 1 

_ _ ~~~~~~~~~~~1/2 
Id 

= ( + 1)(v + 1) JE(xuyy') 
2 

jU+ V=P+ 1 

and 
_ _ ~~~~~1/2 

C= E(xuy )]/ 
,U+ =P+ 1 

THEOREM 2. Let r = a = (p1/2 + p-1/2)/2 in (2.3). Then 

(3.10) lim ea/rabdp = 2a/d 

and 

(3 .1 1) lim ea/cp = 2a/2c , 

Proof. For each of the representations (2.3), (3.3) and (3.7), consider the first 
sum on the right-hand side of the decomposition 

E (.)= E (.)+ E( 
A+V '2p+ 1 A+Y=p+l 1 Ay+ v2p+2 

Since a = p1/2(1 + p-1)/2, 

(3.12) E a- IE(xuyY) I? 2'p+1' p + P 
J+ Y=P+1 

E[U,(x)U^(y)] = 2P+1E(xuy') for A + v = p + 1, and it follows that 

l6r-2 E (A + 1)(v + 1) IE[Uu(X)U"(Y)]12 

(3.13) M+Y=P+1 (p+1 - 1V+1 - pV1 

= 22P+6 -(P+3) -2 (M + l)(v + 1) |E(xuyV)I2 

+ v=p+ 1 (1 - P22)(1 - 2p ) 

For A + v = P + 1 and A, v $ 0, we have E[Tu(x)T,(y)] = 2P-1E(xuy'). In addition, 
E[TP+1(x)] = 2PE(xp+ 1) and E[TP+1(y)] = 2PE(yp+ 1). Thus, 
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(3.14) 16 E p" IE[T,(x)T,(Y)]12 = IC+ 
JL+ v=P+ 1 

By (2.3) and (3.12), 

ea 2P +l(p+) /2 

Since ab = (p - p-1)/4, (3.3) and (3.13) imply 

,xabdp - 2p~p (p~ / 
Id 

Finally, (3.7) and (3.14) give 

c p-- 2 p+lp-(P+l)/2 

The proof follows from these asymptotic equalities. 
It is possible to simplify the right-hand sides of (3.10) and (3.11) if (2.1) is a cross- 

product rule. Let the two quadrature rules 
1 

W1(x)fl(x) dx W1,411(XI) 
-1 l 

and 
1 NN2 

j WV)YVAY) dy ~ E w2,if2(yi) 1~~~~~~= 

have precision pl and P2, respectively. The cross-product rule generated by these 
rules, 

1 1 N, N2 

(3.15) ] ] o(x)2(y)f(x, A) dy dx = E W1,iW2,if(x1, y,) + E(f), 
-1 -1 . =1 j=1 

has precision p = min {p, P21. 
COROLLARY 1. If p1 $ P2, then 

lim ea/7rabdp = (p + 2)-1/2 and lim ea/cp = 1. 

If P1 = P2 and E(xp+1) = E(yp+1) in (3.15), then 

ea F2 11/2 ea / lim = I and lim -e = 21/2 
pa 7rabdp Lp+ 2 Pj cp 

Proof. Suppose p, $ P2. With no loss of generality, we may assume p = . 
All of the errors E(x~y'), As + v = p + 1, are zero except E(xp+ 1). Thus, 2 a = IE(xp+ 1)1, 

d = (p + 2)1/2 IE(xp+1)l and 1, = IE(xp+1)I. 
If p = P2 = p and E(xP+ 1) = E(yP+ 1), then a = 2 IE(xp+ 1)I, Id = [2(p + 2)]1/2 

IE(xp+1)l and 2. = V/21E(xp+1)I, since E(xp+1) and E(y'+1) are the only nonzero 
errors of the form E(x~y'), ,u + v = p + 1. The proof now follows from Theorem 2. 

We mention that the second part of the corollary applies to cross-product rules 
in which the same quadrature rule is used in both the x and y variables. 

It is possible to bracket the right-hand sides of (3.10) and (3.11) for nonproduct 
cubature rules. Let n denote the number of nonzero terms in the set of errors 
IE(x~y) : A + v = p + 11. 

COROLLARY 2. 
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(3.16) P +~~~ < l ea < [n 1] (3.16) P3~adIp2 

and 

(3.17) 1 < lim ea < nl2 
p--+ Cp 

Proof. The proof follows from Theorem 2 by using the relations 

min (A + 1)(v + 1) = p + 2, 
a+ v=P+ 1 

max + 1)(v + 1) < (p + 3)2/4 
g+ v=p+ 1 

and 

1c <_ l < nh /2 c 

to obtain upper and lower bounds for a/d and za/Ic 

Note that n < p + 2 and, therefore, the right-hand side of (3.16) is at most 1. 
For fully symmetric rules, n ? (p + 3)/2. We remark that it is possible to have 
equality on the left- or right-hand sides of (3.16) or (3.17). It is not hard to construct 
specific rules to exhibit this. In fact, Corollary 1 defines classes of rules for which we 
have equality on the right-hand side of (3.16) and both sides of (3.17). 

Example 4. The fully symmetric rule 

Id d 40 1 051/2 0"+~ 105 1/2\ fL L (x, y) dy dx =49 f+15 ?) + f + 15) 

+4 [49 3 ?zi3 )]+ E(i 

has p = 5. The Barnhill error constants dp for this rule are given in [19, p. 249]. The 
Chawla error constants cp can be computed from (3.7). 

For this rule, 

ea 17.7710p-3, 

7rabdp ' 31.1827p 3 

and 

cp~ 8.9700-3. 

These quantities are tabulated in Table 5. 

TABLE 5 
Error Constants for Example 4 

a P ea 17.771Op-3 7rabdp 31.1827p-3 cP 8.9700p-3 

1.6 8.1168 .3549(-1) .3323(-1) .5765(-1) .5831(-1) .1714(-1) .1677(-1) 
2.0 13.9282 .6860(-2) .6577(-2) .1149(-1) .1154(-1) .3344(-2) .3320(-2) 
3.0 33.9706 .4618(- 3) .4533(- 3) .7749(- 3) .7954(- 3) .2291(- 3) .2288(- 3) 
4.0 61.9839 .7540(-4) .7462(-4) .1309(- 3) .1309(- 3) .3767(-4) .3767(-4) 
6.0 141.9930 .6236(- 5) .6207(- 5) .1089(-4) .1089(-4) .3133(-5) .3133(- 5) 
8.0 253.9961 .1087(-5) .1084(- 5) .1903(-5) .1903(- 5) .5474(-6) .5474(-6) 
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In this example, n = 4 and Corollary 2 gives 

.2500 ? lim ed Irabdp < .7560 

and 

1 < lim e /cp < 2. 

The actual limits are equal to .5699 and 1.9812, to 4 places. 

4. Error Constants. The constant er gives valuable information about (2.1), 
since it allows one to compare the relative merits of one cubature rule with another. 

TABLE 6 

Values of er,cforD: -1 < x,y < 1 

\rUle C, 5-1 C2 5-4 C., 5-5, n =2 C,2 5-5 
\ C = .2045 C = .2044 C = .4444 C = .6222 

r \ er er er er 

1.1 1.789 1.650 9.290 10.27 
1.2 .5435 .4754 1.745 2.039 
1.3 .2252 .1911 .5882 .7131 
1.4 .1098 .9131(-1) .2554 .3179 
1.6 .3467(- 1) .2813(- 1) .7110(- 1) .9166(-1) 
2.0 .6347(- 2) .5035(- 2) .1171(- 1) .1566(- 1) 
3.0 .4078(-3) .3180(- 3) .6968(-3) .9626(- 3) 
4.0 .6558(-4) .5089(-4) .1096(- 3) .1530(-3) 
6.0 .5367(- 5) .4151(- 5) .8839(- 5) .1243(-4) 
8.0 .9324(-6) .7203(-6) .1528(- 5) .2154(- 5) 

TABLE 6' 

Values of e,, cfor D: -1 x, y ? 1 

\rule C,2 5-6 C,2 7- 1 C, 7-3 C,2 7-5 
\ C = .6222 C = .1367 C = .5873(- 1) C = .4423 

r \ e, e, e, er 

1.1 6.432 .7911 .4688 4.131 
1.2 1.246 .1668 .9721(- 1) .6689 
1.3 .4254 .5309(- 1) .3200(- 1) .1941 
1.4 .1858 .2095(- 1) .1337(- 1) .7301(- 1) 
1.6 .5192(- 1) .4726(- 2) .3057(- 2) .1563(-1) 
2.0 .8550(- 2) .5268(-3) .3477(- 3) .1649(-2) 
3.0 .5068(-3) .1474(-4) .9622(- 5) .4357(-4) 
4.0 .7955(-4) .1332(- 5) .8602(-6) .3852(- 5) 
6.0 .6405(- 5) .4851(-7) .3102(-7) .1380(-6) 
8.0 .1107(- 5) .4745(- 8) .3022(- 8) .1341(-7) 
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TABLE 7 
Values of er, cforD: X2 + y2 ? 1 

\rule S2: 5-2 Sn, 5-5, n = 2 Sn :5-6, n =2 S2: 7-1 
\ c.7977(- 1) c =.6124(- 1) c =.5223(- 1) c .243 I(- 1 

r \ e, e, e, e, 

1.1 .4361 .3164 .2563 .1177 
1.2 .1661 .1102 .8350(-1) .3234(-1) 
1.3 .7832(-1) .4908(-1) .3555(-1) .1240(-1) 
1.4 .4162(-1) .2505(-1) .1757(-1) .5646(-2) 
1.6 .1464(-1) .8366(-2) .5613(-2) .1558(-2) 
2.0 .2988(-2) .1618(-2) .1035(-2) .2172(-3) 
3.0 .2107(-3) .1089(-3) .6664(-4) .7442(-5) 
4.0 .3492(-4) .1778(-4) .1072(-4) .7187(-6) 
6.0 .2917(-5) .1470(-5) .8771(-6) .2440(-7) 
8.0 .5103(-6) .2563(-6) .1524(-6) .2722(-8) 

TABLE 8 

Values of e, cfor D: x + y _ 1, x, y ? 0 

\ rule Tn :3-1, n = 2 Conical Product Tn 3-8, n = 2 
\ ~~~~~~~~4-point rule [20] 

\ c = .6779(- 2) c = .4969(- 2) c = .2500(- 1) 
r\ e, e, e, 

1.1 .6838(-1) .5476(-1) .2598 
1.2 .3164(-1) .2412(-1) .8166(-1) 
1.3 .1728(-1) .1274(-1) .3720(-1) 
1.4 .1040(-1) .7484(-2) .2011(-1) 
1.6 .4531(-2) .3151(-2) .7735(-2) 
2.0 .1309(-2) .8753(-3) .1993(-2) 
3.0 .1759(-3) .1128(-3) .2432(-3) 
4.0 .4704(-4) .2967(-4) .6289(-4) 
6.0 .7952(-5) .4941(-5) .1035(-4) 
8.0 .2337(-5) .1443(-5) .3006(-5) 

TABLE 9 

Values of c for (4.1) and (4.2) 

rule (4. 1) rule (4.2) 
n C C 

2 .1963 .1963 
3 .7977(-1) .7977(-1) 
4 .3597(-1) .3931(-1) 
5 .2042(-1) .2237(-1) 
6 .1216(-1) .1396(-1) 
7 .8083(-2) .9289(-2) 
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TABLE 10 
Values of 5(r) for the Rules in Tables 6-8 

\le 
\ Group A Group B Group C C2:5-1 C2:5-4 

r\ 

1.1 28.4976 26.2397 112.6972 27.9331 26.9022 
1.2 6.8751 5.5355 28.9352 6.5402 5.9727 
1.3 2.7651 1.9364 12.6435 2.5579 2.2282 
1.4 1.3671 .8358 6.8331 1.2343 1.0337 
1.6 .4540 .2155 2.7127 .3944 .3315 
2.0 .9028(-1) .2778(-1) .7500 .7466(-1) .5512(-1) 
3.0 .6366(-2) .8788(- 3) .1018 .4994(-2) .3470(-2) 
4.0 .1059(-2) .8246(-4) .2778(-1) .8148(-3) .5555(- 3) 
6.0 .8881(-4) .3079(- 5) .4815(-2) .6738(-4) .4535(-4) 
8.0 .1556(-4) .3037(-6) .1435(-2) .1174(-4) .7874(-5) 

Stroud [19] has recently compiled an extensive list of cubature rules. Each rule 
that appears in [19, Chapter 8] has been assigned a unique symbol such as C2: 7-3. 
Here, C2 denotes the square [- 1, 1] X [-1, 1]; the 7 designates the precision of the 
rule; and the 3 means that this is the third rule of precision 7 given for C2 in Stroud's 
listing. In Tables 6, 6', 7 and 8, we have used Stroud's notation to define a cubature 
rule rather than listing its weights and nodes as in (2.1). 

Table 9 gives the error coefficient c for two families of cubature rules for the 
disc, x2 + y2 < 1. The spherical product rules [20] are defined by 

(4.1) f(x y) dx dy A-E E AI(a, sin 2 x , aA COS -l 

where the A,,, aA are the weights and abscissas for the n-point Gaussian quadrature 
rule with weight function lxI on [-1, 1]. The generalized product rules [12] are 
given by 

Jf f(x, y) dx dy 
(4.2) X2 + u2 ?1 

7 o 
r1EEB 
2 1+ 7 

fIo 
+ 7 

b, sin 
A+ 7 

where the B,, b, are the weights and abscissas for the n-point Gauss-Legendre rule. 
Both (4.1) and (4.2) have precision 2n - 1. 

In carrying out the calculations in this paper, it was observed that the errors 
E(x~yy), u + v > p + 1, do not change sign for the following nonproduct rules: 
C": 5-5, n = 2; C2: 5-5, C2: 5-6, C2: 7-5, S.": 5-5, n = 2; S.": 5-6, n = 2 and the 
rule in Example 2. Consequently, (2.4) holds for these cubature rules. 

In Table 10, we give values of 6(r) for the rules in Tables 6-8. It is convenient 
to group some of these rules as follows: 

GroupA: C": 5-5,n = 2, C2: 5-5, C2: 5-6, S2: 5-2, S.": 5-5,n = 2,S,,: 5-6, 
n = 2. 
Group B: C2: 7-1, C2: 7-3, C2: 7-5, S2: 7-1. 
Group C: The rules in Table 8. 
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6. Note Added in Proof. It has been pointed out to the author by one of the 
editors, that the double integral in illustrative Example 2 has the closed-form value of 
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